首页 >> 环境 >> 文章

作者:橡树村

除了温室气体以外,人类的活动还有其他一些会对气候造成影响。最重要的就是气溶胶。气溶胶是空气中固态或者液态的颗粒物的聚集。别看固体液体的密度比空气大上不少,当颗粒足够小的时候,这些东西也是可以漂浮在空中的。小到什么程度呢?差不多是在10个纳米到10个微米之间。这些微小的颗粒物聚集在一起,能够在大气中驻留至少几个小时,甚至更久,长达数天数周。虽然气溶胶停留的时间并不长,但是由于大自然和人类持续的向大气排放气溶胶,所以整体来说大气总是能够保持一定量的气溶胶,因此其对气候的影响也需要考虑。实际上,这是一个非常重要的影响因素。 气溶胶影响气候的方式非常复杂,也很热闹。下面这个图了解释大部分气溶胶对气候的影响过程。首先,最左边的一个,气溶胶会影响大气对太阳光的反射,也就影响了太阳光抵达地面的程度,这个叫做直接作用。但是究竟气溶胶会增大对太阳光的反射,还是会减少太阳光的反射,那可就热闹了。不同化学成分、形状的气溶胶,它们都不一样!究竟起到什么样的作用,要看这个气溶胶的光学性质,同时还与当时的湿度有关,大气中的气溶胶的分布状态,运动状态,高度,地点,也会影响到气溶胶对太阳光的反射。总的来说,可以部分吸收太阳光的气溶胶,如果处在颜色比较深的地球表面上空,比如海洋,或者森林,会减少太阳光对这些地区的辐射,是一个负的辐射强迫;而如果气溶胶处在很明亮的表面,如雪面,冰面,沙漠,或者云的上空,就可能产生正的辐射强迫。一般来讲,气溶胶影响的只是短波辐射,也就是从太阳来的辐射,但是如果气溶胶颗粒加大,就有可能影响到长波辐射,也就是地表发出的红外辐射,这自然就会增加了事情的复杂性。

气溶胶的直接和间接作用

然后呢,气溶胶还可以影响云的行为,这就是间接的影响。这就可以非常热闹了。云是在大气中聚集的水滴或者微小的冰颗粒,所以云也可以粗略分成水云和冰云两种,虽然实际上水云冰云经常混在一起。无论哪一种,大气中气态的水蒸气要凝结,都需要有一个种子,也就是需要大气中的固体或者液体颗粒,或者说需要气溶胶。如果大气中根本就没有这些颗粒,水的分压再高也是形不成云的,在温度比较低的高空,这种情况就比较常见,低空的话,因为气溶胶广泛存在,这样的时候不算很多。要是气溶胶少呢,相对来讲,形成的云的水滴就要大一点,就是左边第二个图显示的。气溶胶多了呢,就是左边数第三个图显示的,会增加云里面的水滴的数量,进而影响云对太阳光的反射。这个作用,被称为一级间接作用。这个具体的影响呢,也与气溶胶的化学成分、大小,和当时的温度有关。然后人们发现实际情况还要热闹。云里面的水滴小了,就会改变下小雨的可能性,左边第四个图画的就是这个;再向右边看,有可能会对云的高度产生影响,可能会影响到云的留空时间。这些都被称为二级间接影响。最右边的两个,说的是因为一些气溶胶对短波辐射的吸收,导致了对流层局部湿度和稳定性的影响,从而影响冰云高度变化以及稳定性改变等等,这个叫做半间接作用。很热闹吧?好在考虑辐射强迫的时候,现在还不考虑半间接作用,不过这个作用也不是被忽略的,而是作为反馈来考虑的。 这么复杂的行为,其认知程度就不要指望太高。对气溶胶的大规模研究起步的年头不多,所以相关学科进展很快,但是因为起步太晚,目前的认识水平基本上是中等水平。到了AR4的时候,已经可以在大陆地上分辨出什么地方大约都有什么气溶胶,也就可以判定那些硫酸盐、有机碳、炭黑、硝酸盐、工业粉尘等等的气溶胶的分布,而卫星监测的使用,地面监测站的建立,也收集了很多数据,可以用来建立验证各式各样的大气气溶胶模型。尽管如此,现在对单一气溶胶的直接辐射强迫的认识还很不足,不过总是已经有了一定的估计。

气溶胶光学厚度

上图为2001年一至三月,下图为2001年八至十月。图中的白色和红色的小点显示了检测气溶胶的站点的分布 人类向大气排放的二氧化硫与水和大气中的氧特别是羟基反应形成的硫酸盐是气溶胶里面很重要的一个,在大气里面,基本上硫酸盐都是以硫酸铵、硫酸氢铵的形式存在的。大气中74%的硫酸盐都是人类排放的,72%来自化石燃料燃烧,2%来自生物质燃烧。大自然也排放不少的二氧化硫,海洋的浮游生物排放的二氧化硫占到了总量的19%,火山喷发也贡献了7%。在1990年代,估计二氧化硫排放的总量是每年9170到12550万吨硫,其中6680到9240万吨硫来自人类活动。人类导致的硫的排放目前已经在下降。欧洲目前硫排放已经从1980年的每年1800万吨降低到2002年的每年400万吨,美国的硫排放也从 1980年的每年1200万吨降低到了每年800万吨,不过在亚洲以及其他发展中国家,硫排放目前还在增长,亚洲2000年代初期的硫排放大约在每年 1700万吨。不过总的来说,从1980年到2000年,全球的二氧化硫排放已经从7300万吨减低到了5400万吨,其中北半球从6400万吨下降到 4300万吨,南半球从900万吨增加到1100万吨。这个硫排放地点的变化,也会对气溶胶的辐射强迫产生影响。对于硫酸盐的辐射强迫,研究者之间的差异还是不小的,从-0.21W/m2一直到-0.96W/m2,平均值在-0.46+-0.20W/m2。在AR4中,最终选定的数值是-0.41W /m2,取90%的置信水平之后,就是-0.40+-0.20W/m2。换句话说,硫的排放可以起到降温的作用。

气溶胶的辐射强迫分布

a) 人类排放的气溶胶的光学厚度;b) 与观测值的差异,显示自然排放的气溶胶的效果; c) 短波辐射; d) 辐射强迫模型的标准偏差; e) 大气的短波辐射强迫; f) 表面的短波辐射强迫

化石燃料的使用还会造成有机碳颗粒和碳黑进入大气,生物质燃烧也有类似作用。这个量,不同的研究者的估计也有不小差异。有人认为化石燃料每年向大气输送 1000万到3000万吨的有机碳颗粒,800万吨碳黑,也有人认为化石燃料提供的有机碳颗粒物和碳黑都只有两吨多,生物质燃烧实际上贡献更多的有机碳颗粒。一组数据说化石燃料燃烧每年提供220万吨有机碳颗粒,而生物能源却贡献了多达每年750万吨。这些颗粒自身对于太阳光照射的影响不算大,同时不同来源的颗粒影响也有区别,而这些颗粒又很容易与其他的颗粒聚集在一起,难以单独考察,这都把问题弄得非常复杂。目前的最佳水平估计,有机碳造成的辐射强迫是 -0.05+-0.05W/m2,炭黑+0.2+-0.15W/m2,生物质燃烧+0.03+-0.12W/m2。人类还排放硝酸盐和其他矿业粉尘。硝酸盐的形成机制,是当大气中所有的硫酸盐都被氨饱和之后,余下的氨会缓慢氧化形成硝酸盐。或者说,在一些硫酸盐的影响下降的区域,会出现硝酸盐的影响上升的情况。目前的估计,硝酸盐颗粒造成的辐射强迫是-0.10+-0.10W/m2,矿物粉尘造成的辐射强迫是-0.1+-0.2W/m2。

对于人类排放气溶胶直接作用辐射强迫的各种估算结果

气溶胶造成的直接影响的总和,并不是这些数值的简单相加。这些单一因素之间即有重叠,也有干扰,简单作加法是不行的。把这些因素综合考虑,也需要对这些作用的充分理解,最终需要依靠模型来模拟计算。这方面到AR4的时候研究也刚开始不久,同时结合一些卫星得到的数据进行验证。不同来源的估算得到的总辐射强迫的数值差异也不小,从略微的正值一直到-0.8W/m2。AR4最终采用的是这些数值的综合,-0.50+-0.40W/m2,这里面的不确定性还是很大的。 间接辐射强迫,也就是说对云的反照率,或者说对云对太阳光的反射的影响,研究仍然在起步阶段,这方面的认识水平很不高。这个影响的确非常复杂,不是所有的气溶胶都会影响云的性质的,所以就要研究究竟什么地方都有什么样的气溶胶,什么样的化学成分,颗粒大小,排放的时候当地的温度、湿度、风的情况、排放高度等等。而由于不同的云对于太阳的反照也有所区别,这里面还需要考虑形成的云的大小、水滴尺寸、冰晶比例,甚至云的形状都是一个不可以忽略的因素。对于已经形成的云,气溶胶也会对云产生一些影响。不打算在这里展开了,有兴趣的可以去看第一工作组技术报告的2.4节。和气溶胶的直接影响一样,对这个间接影响的估算,目前不同研究者得到的结果差异也非常大,从-0.3W/m2一直到-1.8W/m2。AR4又采用了谁也不得罪的方法,把所有人的结果都纳入了进来,选定了一个平均值-0.7W/m2,90%的置信区间是-0.3到-1.8W/m2。也就是说,气溶胶造成的对云的影响,增强了云对太阳光的反射,降低了抵达地球表面的辐射强度。 总结一下,气溶胶的研究还很初步。目前的估计,气溶胶的直接辐射强迫是-0.50+-0.40W/m2,间接的辐射强迫是 -0.7[-0.3~-1.8]W/m2。气溶胶对辐射强迫的贡献,是人类活动对负方向的辐射强迫最重要的,数值也是最大的。可以预计这方面的研究的进步,会对人类活动的整体辐射强迫的估算有很大的影响,大约是对人类活动对辐射强迫估算的最大不确定性的来源。 影响云的还有一个一般人想不到的因素,就是飞机造成的航迹云。对流层的上部气温低,但是气溶胶也很难到达,没有晶种就行不成云,所以这里面的冰很多时候处在过饱和状态。而目前的飞机是可以很轻易的达到这个高度的,实际上喷气式飞机经常在这个高度活动。飞机经过之后,对过饱和状态的水汽造成影响,燃料燃烧排放的颗粒物来提供晶种,就会形成长长的凝结尾迹,也就是能见到的航迹云。这些云自然是可以反射太阳光的,不过这个云也可以吸收地面发射的红外辐射,并且从目前的研究结果来看,后者起到的作用还要大一些。对这个问题研究还不充分,认识水平并不高。AR4的估计,这个凝结尾迹对辐射强迫的贡献是+0.01[+0.003~+0.03]W/m2,基本上是正的强迫,但是数值很小。高空飞行器对于卷云的形成也会有影响,航空燃料燃烧后排放的气溶胶也对云的行为有影响。但是这两个影响,目前还没有了解。 气溶胶的影响不仅仅局限在对光照和云的影响上。气溶胶降落到地面以后,还会对地面对太阳光的反照造成影响,也就是说,影响地表反照。前面讲过,在地球的总能量平衡里面,地表对太阳光的反照也贡献了不小的比例,将近10%的太阳光直接被地表反照。地表对太阳光的反照显然与地表本身的颜色、植被、地形、地貌有关。而人类工业活动以来,大规模改变了不少地方的地表覆盖物,这些变化,就会对地表对太阳光的反照造成影响。比如人类把大量的森林开辟出来,成为农田、牧场,就可以直接改变这个地区地表对太阳的反照程度。农田与森林的反照有很明显的区别,由于森林植被茂密,形状也不一,高低不齐,森林对太阳的反照就要少一些,而农田相对来讲整齐划一,也普遍比较低矮,这样对太阳的反照就要多一些。另外,在降雪的时候,森林很难会完全被大雪覆盖,总是有很多高耸的树木露出来,从而降低雪地对太阳光的反照,而农田基本上是一片平地,被大雪覆盖后比较均匀,对太阳光的反照就会比较强烈。

人类自1750年以来对地表的影响

上图:重建的没有人类影响的地面植被;下图:1750年与1990年农业(中)与农牧业(下)的比较

在1750年,人类农牧业用地的总面积估计是790到920万平方公里之间,占地球陆地面积的7%到9%。这些土地主要分布在欧洲、印度恒河平原,当然还有中国。然后,人类的农牧业用地就一直在增加,在1850年到1950年之间的农牧业用地增长非常迅速,到了1950年前后达到最高值。从1950年开始,农牧业用地总面积基本上稳定,并略有减少。到1990年,人类农牧业用地总量是4570到5130万平方公里,占地球陆地面积的35%到39%。和这个数值相对应的,就是森林覆盖面积的减少,估计森林减少了1100万平方公里。1950年代以后西欧和美国都有大量农牧业土地被废弃,这些地表重新被森林覆盖,与此同时,美洲、非洲和亚洲热带雨林在迅速消失,变成农牧业用地。 森林成为农牧业用地,会导致地表对太阳光的反照程度增加,但是对这个反照程度的估计可不这么容易,需要考虑的因素很多。不同的植被是有不同的反照率的,同样的植物,不同的生长阶段的反照情况也是有很大差异的,所以要得到可靠的反照估计,就需要对于全球各个地方不同时期所种植的植物有所了解,需要了解其播种、成长、和收割的时间等等。可以想象收集这些数据的难度。这个方面现在有了几个根据卫星扫描得到的数据库,有的已经可以精确到一公里分辨率,进步不小,一些研究者已经开始根据这些数据库来对反照的变化进行估算。因为IPCC比较的是1750年与现在的差别,那么1750年的状况是什么样子的,也是需要了解的。这就产生了很大的差别,不同研究者对于历史数据有不同的视角和解读方法,导致计算结果有很大的差异。已经有研究者把1750年的植被情况复原到经纬度半度的分辨率,是很不错的成绩了。其他会对估算造成影响的,还有对雪面的估计,比如积雪多长时间,是否可以覆盖地表和植被等等。综合起来,AR4采用的数据,是1750年以来因为土地改变对地表直接反射造成的影响,其辐射强迫是-0.2+-0.2W/m2,基本上说是一个不算很小的负方向的辐射强迫。目前科学界对这个问题的认识程度是中等。 气溶胶怎么影响地表反照呢?人类向大气中排放的各种气溶胶最终都会降落到地表。气溶胶特别是炭黑沉积到雪面冰面上就会降低地表对太阳光的反照,从而导致一个正方向的辐射强迫。这方面需要考虑炭黑和雪究竟是怎么混合的,炭黑的大小等等因素,涉及到的面积也是一个不确定因素。相关研究有限,AR4采用的数值,是辐射强迫为+0.10+-0.10W/m2,认识程度低。 人类对地表的改变还会带来一些更加复杂的影响。比如直接改变地表的辐射率,比如对水的输送和挥发的影响改变水汽的运动模式,改变潜热和焓的比值(鲍文比 Bowen Ratio,衡量传导与挥发潜热的比值的参数,气象学的一个重要参数),改变空气动力学粗糙度(影响大气的摩擦拽力和热量以及水汽传输的参数)。这些奇怪的气象学名词所描述的现象,都会对接近地表的空气温度造成影响,会对湿度有所影响,影响降雨,也会影响风速。比如人类的灌溉行为就可以改变地表的水汽输送,从而影响地表的能量平衡。人类使用水导致的挥发只占大自然水挥发量的1%,其中70%的用水目的是灌溉。灌溉对温度、湿度、降雨的影响还是有的,甚至对全球的温度和湿度都有影响。比如有研究说亚洲的农业灌溉导致了对流层底部水蒸气含量增加1%,导致+0.03W/m2的辐射强迫。不过,灌溉导致的挥发增加,实际上把地表的能量带入到大气中,在地面,会导致温度降低,同时,灌溉用水也会对大自然的水循环造成干扰。森林减少也会影响水的挥发,等等。这些因素更多的要归结到非辐射强迫里面,不能用套用辐射强迫的概念。人类使用化石燃料也会导致水蒸气的排放,这方面的影响远远低于灌溉用水的影响。总的来说,这方面的认识水平还非常低。 还有很多很复杂的作用。比如农田本身对尘土也有影响,这里面也会对辐射强迫产生贡献。人类排放的一些气体,比如二氧化碳,会影响植物的呼吸作用,从而对鲍文比产生影响,进而影响其他。不过这些因素里面,有一些属于强迫,有一些属于反馈,很多时候很难分辨。这些都归结到非辐射强迫里面,并不在辐射强迫的概念内讨论。对这些问题的认识程度也还很低。 人类活动在地表直接释放的能量,比如加热建筑物、大型机械的工作、汽车里面内燃机的燃烧等等,也会把能量排放到环境里面。这个因素不会对辐射强迫直接产生影响,但是与地球的总能量平衡有关,也可以用W/m2来衡量。这些人类直接的能量排放,基本上都集中在城市里面。在人口集中的地方,人类把大量能量排放到环境里面,影响当地的能量平衡。在城市,这个能量可以达到65W/m2,还是很大的数值。即使没有这些能量排放,因为城市内缺少植被,也会造成城市热岛效应。一个对东京的研究说,在白天,这个数值可以达到平均 400W/m2,而在冬季可以达到 1590W/m2。不过这个因素对于城市气候影响虽然很重要,但是在全球尺度,仍然是一个很小的因素。毕竟城市的面积仅仅占地表面积的 0.046%,全球平均下来,仅有0.03W/m2,对总能量平衡贡献微乎其微。 讨论到这里,人类行为对辐射强迫的影响基本上就讨论完了。总结一下AR4里面研究的人类活动导致的辐射强迫。温室气体,二氧化碳 +1.66+-0.17W/m2,甲烷 +0.48+-0.02W/m2,氧化亚氮 +0.16+-0.02W/m2,氟氯烃 +0.32+-0.03W/m2,对流层臭氧 +0.35[+0.25~+0.65]W/m2,平流层臭氧 -0.05+-0.10W/m2,甲烷导致的平流层水汽增加 +0.07+-0.05W/m2。这些因素的估计,因为研究的相对比较充分,作用机理也比较简单,误差范围都比较小,研究的可靠性也比较高。这些因素之间又相互影响,所以不能简单相加。温室气体的总贡献被估算为 +2.63+-0.23W/m2,比这些数值的和要低。 剩下的两个重要因素的研究水平就要差很多了。气溶胶的直接效应导致的辐射强迫估计为 -0.5+-0.4W/m2,间接效应导致的辐射强迫估计为 -0.7[-0.3~-1.8]W/m2,航迹云的辐射强迫 +0.01[+0.003~+0.03]W/m2。土地变化的影响 -0.2+-0.2W/m2,气溶胶沉降对地表反照的影响是 +0.1+-0.1W/m2。这些因素,大部分都是造成负的辐射强迫的因素,误差几乎都可以达到100%甚至超过100%,导致的绝对数值的变化也很大,研究水平也不高。在这些领域的深入研究有可能会对人类活动影响的结论产生不小的影响。 人类行为的总影响,被估算为+0.6W/m2到+2.4W/m2之间。这个数值的可能范围还是不小的。

人类影响造成的辐射强迫

人类对气候的主要影响就是这些。那么,和大自然自身的变化相比,人类的影响究竟是大还是小呢?

上一篇:IPCC说了什么?(五) 其他温室气体

0
为您推荐

5 Responses to “IPCC说了什么?(六)人类的其他影响”

  1. 蓝精灵说道:

    动物放的屁的成分是什么呢?
    我的猜想是——温室气体。甚至是比二氧化碳要影响要大的温室气体。

    那么多的动物一起放气... ... 至少有60多亿已知的高等动物在排放......其温室效应应该很壮观吧。

    当然,人类对温室效应的贡献不止如此。

  2. Hubert说道:

    云不是气溶胶吗?

  3. 大蔥说道:

    下一篇是不是回答最後一個問題,非常有興趣

  4. [...] 上一篇:IPCC说了什么?(六)人类的其他影响 [...]

Leave a Reply