首页 >> 数学 >> 文章

(四)若干注记

长度的意义说了这么多,到此差不多就可以告一段落了。但是关于在前面的讨论中出现的许多数学概念和思想,却还不妨多说几句。事实上,测度论虽然只是数学中一个具体的分支,但是它的发展和演进却和数学史上最有趣的篇章之一——所谓的“第三次数学危机”——联系在一起。关于这桩公案,坊间的科普书目已经汗牛充栋,我也并不想在这里再重复一遍那些随手就可以找得到的八卦,而只是想针对某些特别的概念和理论略加说明,至少,这对愿意继续阅读别的数学或者数学科普著作的朋友来说,会有点作用吧。

1. 无穷小。

这个概念无疑常常困扰没有受过现代数学训练的阅读者们,这是很自然的事情,因为它可以从直觉上意识得到,却又难于精确地把握:无穷小是什么?是不是可以精确定义的数学概念?它是一个数?还是一段长度?能不能对无穷小做计算?诸如此类等等。由于这个概念几乎天然的和各种哲学式的思辨联系在一起,使得甚至哲学家们也对它颇为关注,——当然,还有数之不尽的民科们。

关于无穷小的讨论者,最著名的大概莫过于莱布尼茨,他花了大把的精力试图精确阐述无穷小的概念并且以此作为整个微积分学的基石。在莱布尼茨看来,无穷小是一个比任何数都小但是不等于零的量,对它可以做四则运算,尤为关键的是可以做除法:两个相关的无穷小量的比值就是一个函数的导数。以此为基本语言他开始建立微积分学的基本理论,——他基本上成功了。直至今天,数学家采用的关于微分的记号仍然来自莱布尼茨,而数学学科内部关于微积分学的专门称呼——“ 分析学”——也来自于莱布尼茨自己对他的理论的叫法:无穷小分析。尽管牛顿和莱布尼茨在微积分的发明权上争得不可开交,可是几个世纪过去,至少在这两件事情上莱布尼茨大获全胜。

可是,也许你想不到的一件吊诡的事情是:尽管莱布尼茨在微积分学的建立过程里做出如此重要的贡献,他的思想的基石——无穷小量——却是一个在今天的数学语言里被完全抛弃了的概念。人们发现这个词汇除了带来混乱之外并没有什么特别的用处,于是作为一种语言,它被丢弃了。

事实上,即使在莱布尼茨的同时期人看来,无穷小也是一个有点让人不舒服的词:比任何大于零的数都小,却不是零。我们当然可以把它仅仅作为一种人为的逻辑概念来使用,可是这样一个怪东西的存在,既使得数学的基本对象——实数的结构变得混乱,也在很多场合带来了麻烦的难于回答的问题(尽管它也确实带来了不少方便)。在分析学蓬勃发展的十八世纪,一代又一代数学大师为此争论不休,大家混乱而各行其是地使用这个词,却没人能说清楚它的精确含义。终于,从十九世纪初期开始,以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的一大批数学家开始为分析学的严密化做出了大量的工作,他们试图在完全不采用“无穷小量”这个概念的前提下重新建立整个分析学,——他们也成功了。

于是这个词就被抛弃了。时至今日,这个词尽管在很多数学书里仍然会出现,但是这时它仅仅作为一个纯粹修辞上的词汇而不是严格的数学概念,——人们通常用它来指代“极限为零的变量”(感谢十九世纪那一大批数学家,极限这个词已经是有了严密清晰的定义而不再仅仅是某种哲学性的描述),也有的时候它被用来作为对微积分运算中的某些符号的称呼,但是无论何时,人们在使用它的时候都明确的知道自己想说什么,更关键的是,人们知道自己并不需要它,而只是偶尔像借助一个比喻一样借助它罢了。

那么,回到这个词最本源的意义:到底有没有这样一个量,比一切给定的正实数都小却又不是零?或者这个问题还有一系列等价的提法:在直线上存不存在两个“相邻”的点?存不存在“长度”的最小构成单位?等等等等。

在今天我们已经能够确定无疑的回答这些问题了:不,不存在。

事实上,这个问题的彻底解答甚至比柯西和魏尔斯特拉斯的时代还要晚:它本质上是关于实数的结构的理解的问题。即使柯西本人——尽管他奠定了现代极限理论的基础——也并不真正了解“实数是什么”这样一个简单的问题。关于严密的实数理论的最终建立,一般认为是皮亚诺(peano),康托(Cantor)和戴德金(Dedekind)这几位十九世纪下半叶的数学家的成就。所谓的“戴德金分划”仍然是今天的教科书里对“实数”这一概念所介绍的标准模型。在这套模型里,人们能够在逻辑上完全自洽的前提下回答有关实数结构的一切问题,而正如前面指出过的那样,它完全摈弃了“无穷小”的存在。

(是不是数学家说无穷小量不存在,这个词就没意义了呢?)

这又回到了前面我们屡次面对的那个关于数学断言的权威性的问题。如果承认无穷小是一个有关数的概念,那么,数学家的工作已经告诉我们,在实数理论中没有无穷小的位置。事实上,康托本人就曾经证明过承认无穷小是同承认实数中基本的阿基米德原理相矛盾的。(阿基米德原理是一个关于实数性质的基本原理,如果阿基米德原理是错的,整个数学大概都无法得以建立。)但是,如果把问题拉到数学的疆域以外,如果认为人们有权利不按照数学家的方式讨论数本身的性质,那么我们面对的就已经是全然另一层次的问题,——也就不可能在这里得到详尽的讨论了。

2. 无穷大。

有趣的是,和无穷小如此相似的一个词——无穷大——却在今天的数学语言中占有与之判若云泥的一个地位:人们谈论它,研究它,还给它以专门的记号(倒 8字)。造成这一多少有点奇特的事实的关键在于,和通常人们的误解不同,无穷大其实并不是无穷小这个词在概念上的对偶(尽管乍一看似乎如此)。事实上,就某种意义而言,说它是零这个词的对偶也许更为恰当一些。

让我们回顾一下这个概念在数学中的递进过程:我们都知道存在这样的数列(例如自然数列),可以一直变得越来越大,直到比任何给定的数都更大,这种时候,我们把这样的数列称为“趋于无穷大”或者直接就简称它是无穷大。——请注意,在这里无穷大仅仅是作为人们对一个数列或者变量的极限的叫法而存在的,我们并没有承认它是一个数或者一个确定的对象,而只是一个形容词而已。每个具体的数都不可能真的比别的数都大,尽管一系列数可以没有止境地变得越来越大,这实质上就是亚里士多德所强调的“潜无穷”。

如果事情只是到此为止,那一切相安无事,无穷大这个词今天的地位也只不过和无穷小一样仅仅作为对一种极限的描述而存在罢了。可是这里有某种微妙的差别:正如前面提到过的那样,“无穷小”不是别的,只是一个变量极限为零而已,所以我们总可以认为无穷小只是一种说法,在必要的时候可以用“趋于零”这样一个替代说法来换掉它。可是“无穷大”是什么极限呢?它并不是趋于任何特定数字的极限,而是“趋于无穷大的极限”,你看,这个词轻易回避不掉。

于是人们只好被迫不断的提及它,要是非要替换成别的说法,就要花好多倍唇舌才成。比如,前面说过直线本身也是直线的可测子集,那么整条直线的测度是多少?当然我们可以佶屈赘牙地说“直线可测,但是它的测度并不是一个确定的数,而只是比任何给定的实数都要大。”——这也太麻烦了一点。为什么不省点事直接说“直线的测度等于无穷大”呢?

这样人们就开始不断的把无穷大当一个名词来使用,假装它好像也是一个数一样,这就是所谓的“实无穷”。哲学家和数学家中比较喜欢哲学争辩的那一部分人对此有许多争论(直觉主义学派等等),但是让我们忽略掉它们,先看看在今天数学家是怎么使用这个词的吧。

首先,无穷大不是一个实数,在实数集中不存在任何数比其他所有数更大,这是确定无疑的事情。

其次,在许多场合下,我们确实可以把无穷大当作一个名词来使用,既方便又不造成困扰。例如前面提及的在测度论里我们说一个可测集的测度是一个“数 ”,这里的“数”既包括非负实数也包括无穷大。事实上,在有些数学书里索性把实数加上无穷大这样一个集合称为“增广实数集”。我们甚至可以对无穷大定义运算(在事先做好严格约定的前提下),这对于很多理论的叙述带来了极大的方便。如果说得更技术化一点,在很多数学分支(例如仿射几何)里我们还能像让每个实数对应于直线上的一个点这样一个几何对象一样,让无穷大这样一个特殊的对象也对应于一个特殊的几何对象(所谓的“无穷远点”),并且让所有这些几何对象平等地参与到几何学中来。只要仔细做好事先的公理准备,这样子做并不会引起任何逻辑问题。

——也许有人会觉得奇怪,怎么数学家可以如此随便,想给实数集添上什么就添上什么?事实上,数学家就是有这样的权利,因为说到底,数学不是研究真实自然界的学问,而只是研究人造概念的学问。任何人造概念,只要在逻辑上被严格的描述出来又不造成内在的逻辑不自洽,都可以被认为是“存在”的。复数的引进就是一个很好的例子。

——那前面怎么又说“无穷小不存在”?就算无穷小本身不能是一个实数,为什么不能把它添在实数集之外也弄一个“增广实数集”出来研究?

事实上,这样做是可以的,而且事实上也确实有好事者这样做过。问题在于它毫无意义。前面说了,任何人都有权利自己定义出一些什么东西来作为数学对象来研究,这是对的,只要他在逻辑上足够细心就行。可是这句话还有一个常常被人忽视的反面:数学尽管不是直接研究自然界的学问,可是它毕竟是在人们研究自然界的过程中形成而又有助于人们对自然界的理解的。如果一个数学概念纯粹只是自说自话的产物,那无论它多么自洽,也没有人会去关心它。复数这一人为的构造之所以被所有人承认是因为它巨大的威力。而无穷小——正如前面所指出的——是一个毫无必要引入的概念,添上它只会自找麻烦。无穷小和无穷大的命运之所以不同,关键正在于此。

回到无穷大这个词上来。这一系列文章的一开头还说过无穷大可以分成“可数”和“不可数”的无穷大,那又是怎么回事?

这是一个更常见的误解,这其实是两个不同的词:作为一个极限的(潜)无穷和由此引申而来的作为一个数学对象的(实)无穷是一码事,作为一个集合的势的可数无穷或者不可数无穷是另一码事,不同于前者的“无穷大”,后者其实应该被称为“无穷多”才对,只是人们通常混为一谈。事实上,当我们说“一个集合有无穷多个元素”的时候,我们有必要指出这个集合是不是可数,而当我们说“一条直线的测度是无穷大”的时候,却完全谈不上什么可数不可数。——在数学书中通过观察上下文,分辨这两者并不是很难的事情,可是如果把“无穷”作为一个哲学命题来研究的时候,这种区分却是必须的。——不幸的是,就我阅读所及,很多时候人们都没做到这一点。

3. 不可测集与选择公理、数学的严密性

回顾一下“不可测集”这个词的意思:在勒贝格测度的意义下,总有一些集合是没办法定义测度的,这样的集合称为不可测集。同时已经被我们反复指出过的一点是:一个没受过专门数学训练的人所能想象到的任何古怪集合其实都是可测的,不可测集非常罕见。

不可测集的存在是数学中中一件令人遗憾的事实,要是能给直线的任何一个子集定义长度,这样的理论该有多么漂亮啊……数学中常常有这样的情形,一个人们通过直觉认定的美妙设想,偏偏被一两个好事者精心构造出的反例破坏了,但是数学毕竟受制于逻辑,不管一个反例多么煞风景,只要它确实成立,数学家也只好接受它。

可是不可测集这个例子有点不同:构造不可测集,用到了选择公理。

这件事情说来话长,简单的说,我们都知道整个数学是建立在一些很显然也很直观的公理之上的,这些公理大多数都是诸如等量之和为等量之类的废话,可是选择公理稍微复杂一点,它是说:

任何给定一组非空集合,我们总能从其中的每一个集合里取出一个元素组成一个集合。

也像废话一样,是吧,可是这句话多少有点罗嗦,不像等量之和为等量一样简单明了。于是人们对它多少有所争议,有人认为它不应当排在基本公理之内。可是毕竟这句话也挑不出什么错,而且人们很快发现,很多很有用的数学结果离开选择公理就变得很难证明或者根本不可能证明,于是将就着也就承认它了。

可是不可测集的存在却又掀起了人们的疑虑,反对选择公理的人说,看看吧,要是没有选择公理,也就没有不可测集了。

赞成的人反驳说,不可测就不可测呗,有什么大不了的……虽然整个理论确实变得不那么完美了。——他们不知道更大的问题还在后面。1924年,波兰数学家巴拿赫(Banach)在选择公理和不可测集构造法的基础上,证明了石破天惊的“分球定理”:一个半径为1的实心球,可以剖分成有限的若干块,用这些块可以完整地重新拼出两个半径为1的实心球体!

这一下引起轩然大波,反对选择公理的数学家们声势大振,认为选择公理完全是trouble maker,必欲除之而后快。赞成选择公理的数学家们则指出选择公理“功大于过”,毕竟有很多有价值的数学成果出自选择公理的基础。双方僵持的结果是大家各行其是,大多数数学家承认选择公理,同时忍受巴拿赫分球定理所带来的不适感,少数数学家坚持不要选择公理,为此失去很多别的很有用的定理也在所不惜。

这一僵持局面维持了很多年,直到二十世纪的中叶才被戏剧性地解决。人们在不承认选择公理的假设下构造出了一大堆比巴拿赫的球体更严重的反例(例如一个空间同时有两个维数)。这些反例不只像巴拿赫的例子一样违反直觉,而且还严重的破坏了大多数已有的数学结果。于是人们发现,承认选择公理也许是必须的,而像巴拿赫的反例那样的反直觉的结果,也只能被迫承担下来了。

所以到今天几乎所有的数学研究都是在承认选择公理的基础上进行的。虽然作为一种后遗症,人们总是会时不时地谨慎的在使用选择公理的时候加上一句声明:“本文依赖选择公理。”——这也许是这条公理的一个特殊待遇了。

以上便是这段公案的来龙去脉。很多人可能在读完这段故事之后疑虑重重。什么啊?数学家们难道是这么随便的确定公理体系的么?如此的实用主义,似乎全然置真理的地位于不顾的样子。很多人可能还会想起欧几里德第五公设的故事,觉得数学家们原来如此不负责任,带给人们的不是一套严整规范的理论体系,而是一个支离破碎的混乱图景。连公理的问题都搞不定,整个数学岂不是空中楼阁?

限于篇幅,这篇文章不可能对这个问题予以展开论述,可是至少我们可以澄清一个常见的似是而非的误解:数学是严密性的科学,数学的发展也只有在严密的公理化基础上才能得以实现。

这句话——至少在字面上——是对的。不可测集的例子本身就说明,为了严密性,数学家们甚至不惜放弃直观,——像巴拿赫球那样的例子尽管如此怪诞,可是它是严密逻辑的产物,数学家也只好承认它的存在。

可是在更宏观的层面上,这句话却是错的。前面提到的分析学就是很好的例子:微积分的思想的提出是在十七世纪,在随后的十八世纪里取得了丰硕的成果,可是它的严密化却直到十九世纪下半叶才真正得以实现。测度论是另一个例子:“测度”是人们对于长度这个词的直观理解的严密化,可是这并不是说,在测度论被提出之前的漫长岁月里人们对于长度都一无所知,恰恰相反,人们已经知道了相当多的事情,只是等待测度论的语言让一切都变得精确和完整而已。

所以数学的发展实质上是一个拖泥带水的过程,一代又一代崭新、充满活力却又粗糙的思想被提出来,人们意识到它的重要性,予以发扬光大,产生一系列重要的成果同时又带来困惑,直到崭新的数学语言诞生,清理战场,让一切显得井井有条,像教科书上的文字一样道貌岸然,而同时却又有新的粗糙的思想诞生了…… 在这个过程里,严密性始终只是一个背景,尽管无处不在,可是并不占据舞台的统治地位。数学家们在意严密性,追逐严密性,甚至不惜为了严密性而牺牲看似有价值的学术成果,可是严密性并不是数学发展的引领旗帜,从来都不是。

这就是为什么同很多人的误解相反,大多数数学家其实并不关心那些关于数学基础的哲学性的争论,这也就是为什么我把眼前这些讨论放进附记的原因——一件事情是不是关系到数学的逻辑基础和这件事情在数学上是不是重要一点关系都没有。所有这些故事:可数与不可数、可测与不可测、选择公理等等,都是和二十世纪初所谓“第三次数学危机”的大背景联系在一起的,那段时间里数学家之间产生了无数纷争,可是今天的数学学生们在严肃认真地学习集合论和测度论的同时,却只对那些八卦付之一笑,作为茶余饭后的谈资。——事实上,即使在二十世纪初,也有大量的数学家根本不关注这件事情或者压根就采取了日后看来是错误的立场(反对康托,反对不可数集的概念,等等)却同时又在自己的领域里作出了重要的甚至是历史性的贡献。

关于那个所谓的“第三次数学危机”,有一本著名的科普著作《数学:确定性的丧失》[2]专门讨论了它。这本书内容相当详尽,不幸的是它所引起的误解和它阐明的事情一样多。关于这次“危机”的描述主要集中在第十二章,那一章的结尾倒是相当深刻,值得特别引用在此:

“一个寓言恰如其分地概括了本世纪有关数学基础的进展状况。在莱茵河畔,一座美丽的城堡已经矗立了许多个世纪。在城堡的地下室中生活着一群蜘蛛,突然一阵大风吹散了它们辛辛苦苦编织的一张繁复的蛛网,于是它们慌乱地加以修补,因为它们认为,正是蛛网支撑着整个城堡。”

(完)

参考文献[1]:实变函数论 周民强著 北京大学出版社
参考文献[2]:数学:确定性的丧失 M.克莱因著 李宏魁译 湖南科学技术出版社

0
为您推荐

32 Responses to “长度是怎样炼成的(四)”

  1. BillLiv说道:

    先沙发一个,再慢慢欣赏美文!

  2. 杨2说道:

    数学或许可以看成一个特殊的哲学学派吧,特别是元数学

  3. Ghost说道:

    最后一段话让我想起费曼的《物理学讲义》,
    他说,
    就数学无法被实验证明这一点而言,
    数学不算自然科学。
    当时度的时候雷得不行了。

  4. foo说道:

    据说非标准分析里有无穷小的容身之处?

  5. kingcrab119说道:

    “等量之和为等量”是什么?

  6. wOOL说道:

    “在直线上存不存在两个“相邻”的点?存不存在“长度”的最小构成单位?等等等等。
    在今天我们已经能够确定无疑的回答这些问题了:不,不存在。”

    不过如果我们信“量子物理学”的话,貌似是现实世界中有个距离的最小长度,和一个时间的最小长度……

    PS:关于不可测集的构造,其实并不难看懂,WIKI一下维塔利集合

    • cecil说道:

      楼主的意思,物理和现实都跟数学无关,他们只是数学的应用而已。讨论数学就要用数学的语言,相邻的“点”,这个点是数学定义的“点”,不是物理学家定义的点。

    • hunterkiller说道:

      你用物理学的定理来探讨数学问题....

      就好比用美国的法律来审判我国的罪犯....

  7. fair+play说道:

    (倒 8字): 还是8. 哈哈......

  8. mcv说道:

    无穷小不存在么?

    那非标准分析是个啥,笑

  9. cppapp说道:

    数学尽管不是直接研究自然界的学问,可是它毕竟是在人们研究自然界的过程中形成而又有助于人们对自然界的理解的。如果一个数学概念纯粹只是自说自话的产物,那无论它多么自洽,也没有人会去关心它。

    看到这里就想起了何夕的《伤心者》。。人们总是目光短浅的只看到基础研究在当前的应用,而把不能在短期看到效用的研究当作无用物。。

    • liker说道:

      "数学尽管不是直接研究自然界的学问,可是它毕竟是在人们研究自然界的过程中形成而又有助于人们对自然界的理解的。如果一个数学概念纯粹只是自说自话的产物,那无论它多么自洽,也没有人会去关心它。"
      好像不是这样的,似乎在群论刚出现的时候也认为是无用却能自洽的理论。我一直都认为,数学是一切科学后面的真理,只是比大多数学科都要抽象而已

  10. cs说道:

    这几篇文章极好,还有其他成文么?

  11. 科学打工仔说道:

    看的我好累,最后还是有点失望,总算又知道了一个“选择性公理”,没白看。

  12. cc21说道:

    真遗憾!

    写得挺好,只是可惜四篇说的其实是“测度是怎样炼成的”,和长度无关的。打个比方的话,长度的讨论就好比是法律的讨论,而测度的讨论就好比是执法的讨论。长度本身是一个几何概念,而不是这里的分析甚至集合论概念。

    就比如介绍勒贝格测度引入的那一段,要求只考虑那些点和线段构造出的集合,即所谓可测集,几乎就是拓扑概念的引入方式。

    至于数学家和哲学家拌嘴以及后面拿姚明做例子的那段才是真正关于长度的讨论,不过被认为没有太大价值给忽略了。其实那里很快就能牵出实变必见的距离空间概念了。而不同的距离函数会给出很有趣的东西的,比如非欧空间。

  13. Nopic说道:

    数学分类中此帖以前的所有图片都不能显现,请维护!

  14. qygrswg说道:

    文章非常精彩!尽管少数观点我有异议。我有一系列文章及两本书,一本98年出的“论自然科学的若干基本问题”,去年出的“论熵、不可逆过程及数学中的无穷”。(各大学图书馆都有)对康托对角线法、可数不可数问题有详尽的讨论。看到这篇文章,更坚定了我的看法。目前,经过多年的解释、讨论甚至辩论,已经有几个学者同意我的观点了。
    文章作者的一个观点我不同意:似乎关心更深的理论问题是不必要的,是“八卦”。一个真正的数学家,特别是纯粹数学家,不能一方面对公众说数学是多么的高,多么的妙,多么的难以理解;一方面在面对真正的理论问题是,又说“这没什么用”。现在很多人正是有意无意这么做的。一些人还喜欢推来推去。搞数学的,说这是个哲学问题;搞哲学的,又说是个逻辑问题;搞逻辑的,又说是数学问题。一个对这几方面都很重要,很基本的问题,竟然成了弃儿。

  15. Jak说道:

      我理解, 数学不是用来解释这个世界的, 仅用数理逻辑也不可能解释这个世界, 无限这个概念没有公式能解释, 数学是要用来在特定的领域解决问题的, 不会一味用来做一些"不实用"的事情而忽略其发展, 不能与逻辑学同一.
      轻松点, 数学并不是关于世界观的哲学.
      好文, 收藏了.

  16. cl49说道:

    就好象速度有极限(光速)一样,数学上的无穷小没法说,具体的直线肯定有最小值,同样,宇宙应该是有限的,那么具体的直线也是有最大值的

  17. 日中天说道:

    具体的直线肯定有最小值.其实【这个点和直线就是要给个定义的啦】这个直线指时间的话。就可用四维空间来解说了

  18. 犹豫的迷数女生说道:

    好棒的文章。

  19. [...] 注1:关于不可测集与选择公理,可以参见木遥在科学松鼠会上的文章《长度是怎样炼成的》。 [...]

  20. kid008说道:

    作者的文章水平与他的数学功底不相上下。

  21. yux说道:

    这系列的文章太惊喜了。看的太high了

  22. Dirosky说道:

    楼主,读了你的文章,我受益匪浅。但我还是有一些相关问题不懂,请你赐教:
    1、闭区间[a,b]可以看作长度为|b-a|的线段,那么开区间(a,b)根据勒贝格测度,是否能得出长度为|b-a|的线段减去两个单点集的长度(为0),从而得出长度也为|b-a|的结论?另外,根据中学课本的定义是否要有两个端点的才叫线段?线段是由无数个点组成的这种说法是否过于笼统?开区间(a,b)是否能看作开线段(去掉两个端点的线段)?现实生活中是否存在这样的开线段?
    2、线段的长度能否为0,即两端点重合为一点还能不能称之为长度为0的线段,还是只能直接说线段退化为一点?此外,数学上能不能说角度为0的角(如果不能,为什么会有正弦函数sin 0),能不能说时间为0s,即两时刻重合?
    3、现在要求你把10cm的刻度尺平分成等长的两半。你一定会从5cm处切割。那么请问5cm的那个刻度(或者这个点)在哪一半?换种说法,区间[a,b]的中点c我们知道是(a+b)/2,那么,是不是可以说,根据单点集长度为0,区间[a,b]的长度等于闭区间[a,(a+b)/2]加上闭区间[(a+b)/2,b]的长度,即线段ac长度+线段cb的长度等于线段ac的长度?如果硬要将区间[a,b]切割开等长的两半,那么究竟是[a,(a+b)/2]和[(a+b)/2,b](端点共享),还是看起来更加严谨的[a,(a+b)/2)和[(a+b)/2,b],或[a,(a+b)/2]和((a+b)/2,b](即点c在左一半还是右一半),或是三者其实均是一样的,我们关心的只是长度,为什么?
    4、根据第3个问题如何合理解释时刻2秒末等于3秒初的结论?
    5、现实生活中我们常见的所有测量方法是否都依据勒贝格测度,比如说电压1V+1V=2V等等?

    • Eric.Wu说道:

      看点数学分析的书吧,看完一章再看这个你就明白了.这个系列真是写的太美太美了.

  23. chern说道:

    由于阿基米德性,无穷小量不属于实数集。 非标准分析 是 扩充了实数域,叫做超实数域(就是加上无穷小量啦。)

  24. 王金龙说道:

    (所以数学的发展实质上是一个拖泥带水的过程,一代又一代崭新、充满活力却又粗糙的思想被提出来,人们意识到它的重要性,予以发扬光大,产生一系列重要的成果同时又带来困惑,直到崭新的数学语言诞生,清理战场,让一切显得井井有条,像教科书上的文字一样道貌岸然,而同时却又有新的粗糙的思想诞生了…… 在这个过程里,严密性始终只是一个背景,尽管无处不在,可是并不占据舞台的统治地位。数学家们在意严密性,追逐严密性,甚至不惜为了严密性而牺牲看似有价值的学术成果,可是严密性并不是数学发展的引领旗帜,从来都不是。)
    通篇还是这段意味深远,当然最后引用的那段也很有意义!

  25. 路人甲说道:

    根據費曼的說法,數學不可被實驗証明,所以她不是自然科學,但她可是Queen of science (高斯所言)。就好像蜂巢中的蜂后,沒有採花蜜,卻是一個蜂巢的根本。

  26. 莊秉翰说道:

    若將長度值以"幾個單位長"這種方式表達,就可將"長度"和"基數"這兩種概念作連結了。

Leave a Reply